Last updated: 2024-12-24

Checks: 5 1

Knit directory: proj_distal/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Tracking code development and connecting the code version to the results is critical for reproducibility. To start using Git, open the Terminal and type git init in your project directory.


This project is not being versioned with Git. To obtain the full reproducibility benefits of using workflowr, please see ?wflow_start.


# scRNA-seq
library(Seurat)
#packageVersion("Seurat")

# Plotting
library("ggplot2")
library(cowplot)

# Presentation
library("knitr")

# Others
library(stringr)
library("readxl")
library("rstatix")
library(ggpubr)
library('scales')
library( "RColorBrewer")
source(here::here("R/00_generalDeps.R"))
source(here::here("R/output.R"))
filt_path <- here::here("data/processed/figure2_output_seurat_subset.rds")

Introduction

In this document we are going to perform plotting supplementary figure 4 panel A using Seurat.

Loading seurat object processed

if (file.exists(filt_path)) {
    subset <- readRDS(filt_path)
} else {
    stop("Supplementary figure 4  dataset is missing. ",
         "Please check Input first.",
         call. = FALSE)
}

visualization

Literature-based-gene set score

DimPlot( subset, label=TRUE, label.size = 8) + 
         theme( axis.title.x = element_blank(),
                  axis.title.y = element_blank(),
                  legend.position = "none") 

gene_set_pub <- read_excel(paste0(here::here("data/processed/Gene set publications.xlsx")), col_names = FALSE, sheet = "Feuil1")
gene_set_pub <- as.data.frame(gene_set_pub)


# stocke in list
boxplot_list = list()
featureplot_list = list()
df_scores <- subset@meta.data[,c("UniqueCellID","Group")]

for( j in c(3:5,10,12,15,16)){
  paper_names = paste0(gene_set_pub[1,j],"_",gene_set_pub[3,j], "_",gene_set_pub[4,j], "_",gene_set_pub[5,j])
  paper_names = gsub('\\(','',paper_names)
  paper_names = gsub('\\)','',paper_names)
  paper_names = gsub(' ','_',paper_names)
  cat("###",paper_names, '<br>', '\n')

  genes =   gene_set_pub[11:nrow(gene_set_pub),j]
  # Remove NA
  genes <- genes[!is.na(genes)]
  # filtering
  genes = genes[genes %in% rownames(subset)]

  subset <- AddModuleScore(subset,
                              features = list(genes),
                              ctrl = 5,
                              name = paper_names)

  df <- subset@meta.data
  
  # List module score  violin Plot pairwise wilcoxon test
  liste_scores <- df[,c(paste0(paper_names, "1"),'Group')]
  names(liste_scores) <- c('mod_score','Group')
  pwWlcx_scores <- pairwise_wilcox_test(liste_scores,formula=mod_score ~ Group,p.adjust.method = "BH")
  
  # Create datatable
  cat(knitr::knit_print(DT::datatable( as.data.frame(pwWlcx_scores), height = "100%", width = "100%",
                                       class = "compact",
                                       rownames = FALSE,
                                       #colnames = c("Sample", "Nb. Cells"),
                                       options = list(dom = "<'row'rt>", # Set elements for CSS formatting ('<Blf><rt><ip>')
                                                      autoWidth = FALSE,
                                                      columnDefs = list( # Center all columns
                                                        list( targets = 0:(ncol(pwWlcx_scores)-1),
                                                              className = 'dt-center')),
                                                      orderClasses = FALSE, # Disable flag for CSS to highlight columns used for ordering (for performance)
                                                      paging = FALSE, # Disable pagination (show all)
                                                      processing = TRUE,
                                                      scrollCollapse = TRUE,
                                                      scroller = TRUE,  # Only load visible data
                                                      scrollX = TRUE,
                                                      scrollY = "525px",
                                                      stateSave = TRUE))
  ))
  
  p <- ggplot(df, aes(x=Group, y=eval(parse(text = paste0(paper_names, "1"))), color =Group)) +
    geom_boxplot(color="grey") + geom_jitter(shape=16, position=position_jitter(0.2))+
    theme_classic() +
    stat_pvalue_manual(pwWlcx_scores, hide.ns = FALSE, y.position=max(df[[paste0(paper_names, "1")]])+0.05, step.increase=0.05) +
    #scale_color_manual(values=col)+
    theme(axis.text.x = element_text(angle = 0)) + theme(legend.position = 'none') + xlab("") + ylab(paper_names)
  print(p)
  
  # variable scope: local
  boxplot_list[[paper_names]] <- local({
        paper_names <- paper_names
        ggplot(df, aes(x=Group, y=eval(parse(text = paste0(paper_names, "1"))), color =Group)) +
    geom_boxplot(color="grey") + geom_jitter(shape=16, position=position_jitter(0.2))+
    theme_classic() +
    stat_pvalue_manual(pwWlcx_scores, hide.ns = FALSE, y.position=max(df[[paste0(paper_names, "1")]])+0.05, step.increase=0.05) +
    #scale_color_manual(values=col)+
    theme(axis.text.x = element_text(angle = 0)) + theme(legend.position = 'none') + xlab("") + ylab(paper_names)
    })
  
  
  #print(boxplot_list[[paper_names]] )
  
  p<-FeaturePlot(subset,
                 features = paste0(paper_names, "1"), repel = TRUE) +
    scale_colour_gradientn(colours = rev(brewer.pal(n = 11, name = "RdBu")))

  print(p)
  
  featureplot_list[[paper_names]] <- p +  labs(title = "")& NoAxes()
  
  df_scores[[paper_names]] = subset@meta.data[[paste0(paper_names, "1")]]
  
  cat("\n\n")
}

Poon_et_al_2022_nat_immunol_Human_Lung_CD4_TRM

Poon_et_al_2022_nat_immunol_Human_Skin_CD4_TRM

Poon_et_al_2022_nat_immunol_Human_jejunum_CD4_TRM

Zhang_2022_Gut_Human_Liver_HBV_infiltrating_CD4

Zheng_2017_Cell_Human_HCC_infiltrating_CD4

Argyriou_2022_Nat_Comm_Human_Synovial_tissues_TPH

Law_et_al_2024_Nature_Human_Synovial_tissues_TPH

Supplementary figure 4

Panel A

fig <- plot_grid(boxplot_list[[1]], featureplot_list[[1]],
                 boxplot_list[[2]], featureplot_list[[2]],
                 boxplot_list[[3]], featureplot_list[[3]],
                 boxplot_list[[4]], featureplot_list[[4]],
                 boxplot_list[[5]], featureplot_list[[5]],
                 boxplot_list[[6]], featureplot_list[[6]],
                 boxplot_list[[7]], featureplot_list[[7]],
                 nrow = 3, labels = "A")

dir.create(here::here("output", DOCNAME), showWarnings = FALSE)

ggsave(here::here("output", DOCNAME, "suppfigure4-panelA.pdf"), fig,
        width = 24, height = 12, scale = 1)
ggsave(here::here("output", DOCNAME, "suppfigure4-panelA.png"), fig,
        width = 24, height = 12, scale = 1)

fig

Output files

saveRDS(subset, here::here("data/processed/suppfigure4_output_seurat_subset.rds"))
write.table(df_scores, here::here("output", DOCNAME,"suppfigure4-raw_data.csv"), row.names=TRUE,col.names=TRUE, sep =',')

Session information

devtools::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.1.2 (2021-11-01)
 os       Ubuntu 20.04.3 LTS
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       Etc/UTC
 date     2024-12-24
 pandoc   2.14.0.3 @ /usr/lib/rstudio-server/bin/pandoc/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 package         * version date (UTC) lib source
 abind             1.4-5   2016-07-21 [1] RSPM (R 4.1.0)
 assertthat        0.2.1   2019-03-21 [1] RSPM (R 4.1.0)
 backports         1.4.1   2021-12-13 [1] RSPM (R 4.1.0)
 brio              1.1.3   2021-11-30 [1] RSPM (R 4.1.0)
 broom             0.7.12  2022-01-28 [1] RSPM (R 4.1.0)
 bslib             0.3.1   2021-10-06 [1] RSPM (R 4.1.0)
 cachem            1.0.6   2021-08-19 [1] RSPM (R 4.1.0)
 callr             3.7.0   2021-04-20 [1] RSPM (R 4.1.0)
 car               3.0-12  2021-11-06 [1] RSPM (R 4.1.0)
 carData           3.0-5   2022-01-06 [1] RSPM (R 4.1.0)
 cellranger        1.1.0   2016-07-27 [1] RSPM (R 4.1.0)
 cli               3.6.1   2023-03-23 [1] RSPM (R 4.1.0)
 cluster           2.1.2   2021-04-17 [2] CRAN (R 4.1.2)
 codetools         0.2-18  2020-11-04 [2] CRAN (R 4.1.2)
 colorspace        2.0-3   2022-02-21 [1] RSPM (R 4.1.0)
 cowplot         * 1.1.1   2020-12-30 [1] RSPM (R 4.1.0)
 crayon            1.5.0   2022-02-14 [1] RSPM (R 4.1.0)
 data.table        1.14.2  2021-09-27 [1] RSPM (R 4.1.0)
 DBI               1.1.2   2021-12-20 [1] RSPM (R 4.1.0)
 deldir            1.0-6   2021-10-23 [1] RSPM (R 4.1.0)
 desc              1.4.1   2022-03-06 [1] RSPM (R 4.1.0)
 devtools          2.4.3   2021-11-30 [1] RSPM (R 4.1.0)
 digest            0.6.29  2021-12-01 [1] RSPM (R 4.1.0)
 dplyr             1.0.8   2022-02-08 [1] RSPM (R 4.1.0)
 ellipsis          0.3.2   2021-04-29 [1] RSPM (R 4.1.0)
 evaluate          0.15    2022-02-18 [1] RSPM (R 4.1.0)
 fansi             1.0.2   2022-01-14 [1] RSPM (R 4.1.0)
 fastmap           1.1.0   2021-01-25 [1] RSPM (R 4.1.0)
 fitdistrplus      1.1-6   2021-09-28 [1] RSPM (R 4.1.0)
 fs                1.5.2   2021-12-08 [1] RSPM (R 4.1.0)
 future            1.23.0  2021-10-31 [1] RSPM (R 4.1.0)
 future.apply      1.8.1   2021-08-10 [1] RSPM (R 4.1.0)
 generics          0.1.2   2022-01-31 [1] RSPM (R 4.1.0)
 ggplot2         * 3.4.4   2023-10-12 [1] RSPM (R 4.1.0)
 ggpubr          * 0.4.0   2020-06-27 [1] RSPM (R 4.1.0)
 ggrepel           0.9.1   2021-01-15 [1] RSPM (R 4.1.0)
 ggridges          0.5.3   2021-01-08 [1] RSPM (R 4.1.0)
 ggsignif          0.6.3   2021-09-09 [1] RSPM (R 4.1.0)
 git2r             0.33.0  2023-11-26 [1] RSPM (R 4.1.0)
 globals           0.14.0  2020-11-22 [1] RSPM (R 4.1.0)
 glue              1.6.2   2022-02-24 [1] RSPM (R 4.1.0)
 goftest           1.2-3   2021-10-07 [1] RSPM (R 4.1.0)
 gridExtra         2.3     2017-09-09 [1] RSPM (R 4.1.0)
 gtable            0.3.0   2019-03-25 [1] RSPM (R 4.1.0)
 here              1.0.1   2020-12-13 [1] RSPM (R 4.1.0)
 htmltools         0.5.2   2021-08-25 [1] RSPM (R 4.1.0)
 htmlwidgets       1.5.4   2021-09-08 [1] RSPM (R 4.1.0)
 httpuv            1.6.5   2022-01-05 [1] RSPM (R 4.1.0)
 httr              1.4.2   2020-07-20 [1] RSPM (R 4.1.0)
 ica               1.0-2   2018-05-24 [1] RSPM (R 4.1.0)
 igraph            1.5.1   2023-08-10 [1] RSPM (R 4.1.0)
 irlba             2.3.5   2021-12-06 [1] RSPM (R 4.1.0)
 jquerylib         0.1.4   2021-04-26 [1] RSPM (R 4.1.0)
 jsonlite          1.8.0   2022-02-22 [1] RSPM (R 4.1.0)
 KernSmooth        2.23-20 2021-05-03 [2] CRAN (R 4.1.2)
 knitr           * 1.37    2021-12-16 [1] RSPM (R 4.1.0)
 later             1.3.0   2021-08-18 [1] RSPM (R 4.1.0)
 lattice           0.20-45 2021-09-22 [2] CRAN (R 4.1.2)
 lazyeval          0.2.2   2019-03-15 [1] RSPM (R 4.1.0)
 leiden            0.3.9   2021-07-27 [1] RSPM (R 4.1.0)
 lifecycle         1.0.3   2022-10-07 [1] RSPM (R 4.1.0)
 listenv           0.8.0   2019-12-05 [1] RSPM (R 4.1.0)
 lmtest            0.9-39  2021-11-07 [1] RSPM (R 4.1.0)
 magrittr          2.0.2   2022-01-26 [1] RSPM (R 4.1.0)
 MASS              7.3-54  2021-05-03 [2] CRAN (R 4.1.2)
 Matrix            1.3-4   2021-06-01 [2] CRAN (R 4.1.2)
 matrixStats       0.61.0  2021-09-17 [1] RSPM (R 4.1.0)
 memoise           2.0.1   2021-11-26 [1] RSPM (R 4.1.0)
 mgcv              1.8-38  2021-10-06 [2] CRAN (R 4.1.2)
 mime              0.12    2021-09-28 [1] RSPM (R 4.1.0)
 miniUI            0.1.1.1 2018-05-18 [1] RSPM (R 4.1.0)
 munsell           0.5.0   2018-06-12 [1] RSPM (R 4.1.0)
 nlme              3.1-153 2021-09-07 [2] CRAN (R 4.1.2)
 parallelly        1.30.0  2021-12-17 [1] RSPM (R 4.1.0)
 patchwork         1.1.1   2020-12-17 [1] RSPM (R 4.1.0)
 pbapply           1.5-0   2021-09-16 [1] RSPM (R 4.1.0)
 pillar            1.7.0   2022-02-01 [1] RSPM (R 4.1.0)
 pkgbuild          1.3.1   2021-12-20 [1] RSPM (R 4.1.0)
 pkgconfig         2.0.3   2019-09-22 [1] RSPM (R 4.1.0)
 pkgload           1.2.4   2021-11-30 [1] RSPM (R 4.1.0)
 plotly            4.10.0  2021-10-09 [1] RSPM (R 4.1.0)
 plyr              1.8.6   2020-03-03 [1] RSPM (R 4.1.0)
 png               0.1-7   2013-12-03 [1] RSPM (R 4.1.0)
 polyclip          1.10-0  2019-03-14 [1] RSPM (R 4.1.0)
 prettyunits       1.1.1   2020-01-24 [1] RSPM (R 4.1.0)
 processx          3.5.2   2021-04-30 [1] RSPM (R 4.1.0)
 promises          1.2.0.1 2021-02-11 [1] RSPM (R 4.1.0)
 ps                1.6.0   2021-02-28 [1] RSPM (R 4.1.0)
 purrr             0.3.4   2020-04-17 [1] RSPM (R 4.1.0)
 R6                2.5.1   2021-08-19 [1] RSPM (R 4.1.0)
 RANN              2.6.1   2019-01-08 [1] RSPM (R 4.1.0)
 RColorBrewer    * 1.1-2   2014-12-07 [1] RSPM (R 4.1.0)
 Rcpp              1.0.8   2022-01-13 [1] RSPM (R 4.1.0)
 RcppAnnoy         0.0.19  2021-07-30 [1] RSPM (R 4.1.0)
 readxl          * 1.3.1   2019-03-13 [1] RSPM (R 4.1.0)
 remotes           2.4.2   2021-11-30 [1] RSPM (R 4.1.0)
 reshape2          1.4.4   2020-04-09 [1] RSPM (R 4.1.0)
 reticulate        1.23    2022-01-14 [1] RSPM (R 4.1.0)
 rlang             1.1.1   2023-04-28 [1] RSPM (R 4.1.0)
 rmarkdown         2.11    2021-09-14 [1] RSPM (R 4.1.0)
 ROCR              1.0-11  2020-05-02 [1] RSPM (R 4.1.0)
 rpart             4.1-15  2019-04-12 [2] CRAN (R 4.1.2)
 rprojroot         2.0.2   2020-11-15 [1] RSPM (R 4.1.0)
 rstatix         * 0.7.0   2021-02-13 [1] RSPM (R 4.1.0)
 rstudioapi        0.13    2020-11-12 [1] RSPM (R 4.1.0)
 Rtsne             0.15    2018-11-10 [1] RSPM (R 4.1.0)
 sass              0.4.0   2021-05-12 [1] RSPM (R 4.1.0)
 scales          * 1.2.1   2022-08-20 [1] RSPM (R 4.1.0)
 scattermore       0.7     2020-11-24 [1] RSPM (R 4.1.0)
 sctransform       0.3.3   2022-01-13 [1] RSPM (R 4.1.0)
 sessioninfo       1.2.2   2021-12-06 [1] RSPM (R 4.1.0)
 Seurat          * 4.1.0   2022-01-14 [1] RSPM (R 4.1.0)
 SeuratObject    * 4.0.4   2021-11-23 [1] RSPM (R 4.1.0)
 shiny             1.7.1   2021-10-02 [1] RSPM (R 4.1.0)
 spatstat.core     2.3-2   2021-11-26 [1] RSPM (R 4.1.0)
 spatstat.data     2.1-2   2021-12-17 [1] RSPM (R 4.1.0)
 spatstat.geom     2.4-0   2022-03-29 [1] RSPM (R 4.1.0)
 spatstat.sparse   2.1-0   2021-12-17 [1] RSPM (R 4.1.0)
 spatstat.utils    2.3-0   2021-12-12 [1] RSPM (R 4.1.0)
 stringi           1.7.6   2021-11-29 [1] RSPM (R 4.1.0)
 stringr         * 1.4.0   2019-02-10 [1] RSPM (R 4.1.0)
 survival          3.2-13  2021-08-24 [2] CRAN (R 4.1.2)
 tensor            1.5     2012-05-05 [1] RSPM (R 4.1.0)
 testthat          3.1.2   2022-01-20 [1] RSPM (R 4.1.0)
 tibble            3.1.8   2022-07-22 [1] RSPM (R 4.1.0)
 tidyr             1.2.0   2022-02-01 [1] RSPM (R 4.1.0)
 tidyselect        1.1.2   2022-02-21 [1] RSPM (R 4.1.0)
 usethis           2.1.5   2021-12-09 [1] RSPM (R 4.1.0)
 utf8              1.2.2   2021-07-24 [1] RSPM (R 4.1.0)
 uwot              0.1.11  2021-12-02 [1] RSPM (R 4.1.0)
 vctrs             0.6.4   2023-10-12 [1] RSPM (R 4.1.0)
 viridisLite       0.4.0   2021-04-13 [1] RSPM (R 4.1.0)
 withr             2.5.0   2022-03-03 [1] RSPM (R 4.1.0)
 workflowr         1.7.1   2023-08-23 [1] RSPM (R 4.1.0)
 xfun              0.30    2022-03-02 [1] RSPM (R 4.1.0)
 xtable            1.8-4   2019-04-21 [1] RSPM (R 4.1.0)
 yaml              2.3.5   2022-02-21 [1] RSPM (R 4.1.0)
 zoo               1.8-9   2021-03-09 [1] RSPM (R 4.1.0)

 [1] /usr/local/lib/R/site-library
 [2] /usr/local/lib/R/library

──────────────────────────────────────────────────────────────────────────────

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS

Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] RColorBrewer_1.1-2 scales_1.2.1       ggpubr_0.4.0       rstatix_0.7.0     
 [5] readxl_1.3.1       stringr_1.4.0      knitr_1.37         cowplot_1.1.1     
 [9] ggplot2_3.4.4      SeuratObject_4.0.4 Seurat_4.1.0      

loaded via a namespace (and not attached):
  [1] backports_1.4.1       workflowr_1.7.1       systemfonts_1.0.4    
  [4] plyr_1.8.6            igraph_1.5.1          lazyeval_0.2.2       
  [7] splines_4.1.2         crosstalk_1.2.0       listenv_0.8.0        
 [10] scattermore_0.7       usethis_2.1.5         digest_0.6.29        
 [13] htmltools_0.5.2       fansi_1.0.2           memoise_2.0.1        
 [16] magrittr_2.0.2        tensor_1.5            cluster_2.1.2        
 [19] ROCR_1.0-11           remotes_2.4.2         globals_0.14.0       
 [22] matrixStats_0.61.0    spatstat.sparse_2.1-0 prettyunits_1.1.1    
 [25] colorspace_2.0-3      ggrepel_0.9.1         textshaping_0.3.6    
 [28] xfun_0.30             dplyr_1.0.8           callr_3.7.0          
 [31] crayon_1.5.0          jsonlite_1.8.0        spatstat.data_2.1-2  
 [34] survival_3.2-13       zoo_1.8-9             glue_1.6.2           
 [37] polyclip_1.10-0       gtable_0.3.0          leiden_0.3.9         
 [40] pkgbuild_1.3.1        car_3.0-12            future.apply_1.8.1   
 [43] abind_1.4-5           DBI_1.1.2             miniUI_0.1.1.1       
 [46] Rcpp_1.0.8            viridisLite_0.4.0     xtable_1.8-4         
 [49] reticulate_1.23       spatstat.core_2.3-2   DT_0.22              
 [52] htmlwidgets_1.5.4     httr_1.4.2            ellipsis_0.3.2       
 [55] ica_1.0-2             pkgconfig_2.0.3       farver_2.1.0         
 [58] sass_0.4.0            uwot_0.1.11           deldir_1.0-6         
 [61] utf8_1.2.2            here_1.0.1            tidyselect_1.1.2     
 [64] labeling_0.4.2        rlang_1.1.1           reshape2_1.4.4       
 [67] later_1.3.0           cachem_1.0.6          munsell_0.5.0        
 [70] cellranger_1.1.0      tools_4.1.2           cli_3.6.1            
 [73] generics_0.1.2        devtools_2.4.3        broom_0.7.12         
 [76] ggridges_0.5.3        evaluate_0.15         fastmap_1.1.0        
 [79] yaml_2.3.5            ragg_1.2.2            goftest_1.2-3        
 [82] processx_3.5.2        fs_1.5.2              fitdistrplus_1.1-6   
 [85] purrr_0.3.4           RANN_2.6.1            pbapply_1.5-0        
 [88] future_1.23.0         nlme_3.1-153          mime_0.12            
 [91] brio_1.1.3            compiler_4.1.2        rstudioapi_0.13      
 [94] plotly_4.10.0         png_0.1-7             testthat_3.1.2       
 [97] ggsignif_0.6.3        spatstat.utils_2.3-0  tibble_3.1.8         
[100] bslib_0.3.1           stringi_1.7.6         ps_1.6.0             
[103] highr_0.9             desc_1.4.1            lattice_0.20-45      
[106] Matrix_1.3-4          vctrs_0.6.4           pillar_1.7.0         
[109] lifecycle_1.0.3       spatstat.geom_2.4-0   lmtest_0.9-39        
[112] jquerylib_0.1.4       RcppAnnoy_0.0.19      data.table_1.14.2    
[115] irlba_2.3.5           httpuv_1.6.5          patchwork_1.1.1      
[118] R6_2.5.1              promises_1.2.0.1      KernSmooth_2.23-20   
[121] gridExtra_2.3         parallelly_1.30.0     sessioninfo_1.2.2    
[124] codetools_0.2-18      pkgload_1.2.4         MASS_7.3-54          
[127] assertthat_0.2.1      rprojroot_2.0.2       withr_2.5.0          
[130] sctransform_0.3.3     mgcv_1.8-38           parallel_4.1.2       
[133] grid_4.1.2            rpart_4.1-15          tidyr_1.2.0          
[136] rmarkdown_2.11        carData_3.0-5         Rtsne_0.15           
[139] git2r_0.33.0          shiny_1.7.1